Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 2.666
Filter
Add more filters

Publication year range
1.
J Anim Sci ; 1022024 Jan 03.
Article in English | MEDLINE | ID: mdl-38613515

ABSTRACT

Angus-crossbred steers (n = 400; 369.7 ±â€…7.6 kg) were used to determine the influence of trace mineral (TM) source and chromium propionate (Cr Prop) supplementation on performance, carcass characteristics, and ruminal and plasma variables in finishing steers. Steers were blocked by body weight (BW) and randomly assigned within block to treatments in a 2 × 2 factorial arrangement, with factors being: 1) TM source (STM or HTM) and 2) Cr supplementation (0 or 0.25 mg Cr/kg DM, -Cr or + Cr, respectively). Treatments consisted of the addition of: 1) sulfate TM (STM; 90, 40, and 18 mg/kg DM of Zn, Mn, and Cu, respectively), 2) STM and 0.25 mg Cr/kg DM from Cr Prop, 3) hydroxychloride TM (HTM; 90, 40, and 18 mg/kg DM of Zn, Mn, and Cu, respectively), and 4) HTM and 0.25 mg Cr/kg DM from Cr Prop. Each treatment consisted of 10 replicate pens with 10 steers per pen. Body weights were obtained on consecutive days at the initiation and termination of the 154-d study. Steers were fed a steam-flaked corn-based finishing diet. Ractopamine hydrochloride was fed for the last 31 d of the study. Ruminal fluid and blood samples were obtained from one steer per pen on days 28 and 84 for ruminal volatile fatty acids (VFA) and plasma TM and glucose analysis. Steers were slaughtered at the end of the study and individual carcass data were collected. No Cr × TM source interactions (P = 0.48) were detected. Steers supplemented with HTM had greater (P = 0.04) hot carcass weight (HCW), dressing percentage (DP), longissimus muscle (LM) area, and USDA yield grade (YG), and tended (P = 0.12) to have greater average daily gain (ADG) than those receiving STM. Average daily gain, gain:feed, dressing percentage, and longissimus muscle area were greater (P = 0.04) for + Cr steers compared to-Cr steers. Hot carcass weight tended (P = 0.06) to be greater for + Cr steers. Ruminal acetate concentrations at 28 d were lesser (P = 0.01) for HTM vs. STM steers, and greater (P = 0.04) for + Cr steers compared to-Cr steers. Plasma concentrations of Zn, Cu, and Mn were not affected by TM source or Cr supplementation. Steers supplemented with Cr had greater (P = 0.05) plasma glucose concentrations than-Cr steers at 28 but not at 84 d. Results of this study indicate replacing STM with HTM improved carcass characteristics in finishing steers, and Cr Prop supplementation improved steer performance and carcass characteristics.


Trace minerals (TM) are supplemented to finishing cattle diets to prevent TM deficiencies. Sources of TM differ in their bioavailability and effect on rumen fermentation. Chromium is a TM required in low concentrations to enhance insulin activity. We tested the effect of TM source (hydroxychloride; HTM vs. sulfate; STM) and supplemental Cr propionate (Cr Prop) on performance and carcass characteristics of finishing steers. Providing 0.25 mg of supplemental Cr/kg DM, from Cr Prop, improved gain, feed efficiency, and carcass characteristics in steers. Steers supplemented with HTM tended to gain faster and had improved carcass characteristics of economic importance compared to those supplemented with STM.


Subject(s)
Animal Feed , Diet , Dietary Supplements , Propionates , Trace Elements , Animals , Cattle/physiology , Cattle/growth & development , Male , Dietary Supplements/analysis , Animal Feed/analysis , Diet/veterinary , Trace Elements/pharmacology , Trace Elements/administration & dosage , Propionates/pharmacology , Propionates/administration & dosage , Rumen/drug effects , Rumen/metabolism , Body Composition/drug effects , Chromium/pharmacology , Chromium/administration & dosage , Animal Nutritional Physiological Phenomena , Random Allocation , Meat/analysis
2.
Aust Vet J ; 102(5): 242-248, 2024 May.
Article in English | MEDLINE | ID: mdl-38342579

ABSTRACT

Humate may be a valuable livestock feed additive, with potential effects on nutrient utilisation and animal performance. Thus, the aim of this study was to investigate the effect of K Humate S 100R supplementation on the feed intake, liveweight gain, and carcass parameters of Angus steers. Within individual pens, 40 weaned steers were allocated to four treatment groups (n = 10/potassium humate K Humate S100R, Omnia Specialities Australia) for 100 days. The treatment groups included Group 1, 35 g K Humate S100R/animal/day; Group 2, 70 g K Humate S100R/animal/day; Group 3, 140 g K Humate S100R/animal/day; and Control Group, which were not supplemented with K Humate S100R (0 g K Humate S100R/animal/day). Chemical and mineral composition of the feed ingredients, dry matter intake (DMI), and average daily weight gains were recorded. The steers were slaughtered as a single group at a commercial Australian abattoir. Standard measures for hot standard carcass weight, eye muscle area, fat depth and coverage, marbling, ossification, meat and fat colour, dressing percentage and loin pH values at 24-hour postmortem were recorded. It was found that the steers allocated to Group 2 had higher DMI (P = 0.003) and feed conversion ratio (FCR) (P < 0.001) compared with those allocated to Group 1 and the Control Group. The MSA marbling score was lowest for steers allocated to the Control Group (P < 0.05) and comparable for those allocated to Groups 1, 2, and 3. Together, these results demonstrate that increased levels of K Humate S100R supplementation improved the carcass quality, via an increase in MSA. However, further research is warranted on the potential effects of humates supplementation on intramuscular fat associated qualities of beef.


Subject(s)
Animal Feed , Diet , Dietary Supplements , Weight Gain , Animals , Cattle/physiology , Male , Animal Feed/analysis , Diet/veterinary , Animal Nutritional Physiological Phenomena , Eating/physiology , Body Composition/drug effects , Australia , Meat/analysis , Meat/standards
3.
J Anim Physiol Anim Nutr (Berl) ; 108(3): 635-645, 2024 May.
Article in English | MEDLINE | ID: mdl-38197588

ABSTRACT

Biotin (BI) and cobalamin (CA) are essential for rumen propionate production and hepatic gluconeogenesis. The study evaluated the influence of BI or/and coated CA (CCA) on milk performance and nutrient digestion in cows. Sixty Holstein dairy cows were assigned in a 2 × 2 factorial arrangement and randomised block design to four groups. The factors were BI at 0 or 20 mg/day and CCA at 0 or 9 mg CA/day. Dry matter intake increased with BI addition but was unchanged with CCA supply. Addition of BI or CCA increased fat-corrected milk, milk fat and milk protein yields and feed efficiency. Moreover, lactose yield was increased by CCA addition. Dry matter, organic matter, crude protein and acid detergent fibre total-tract digestibility increased for BI or CCA supply. When CCA was supplemented, positive response of neutral detergent fibre digestibility to BI addition was enhanced. Supplementing BI did not affect pH, propionate content and acetate to propionate ratio, but increased total volatile fatty acids (VFA) and acetate contents. Supplementing CCA decreased pH and acetate to propionate ratio, but increased total VFA, acetate and propionate contents. Rumen protease and carboxymethyl-cellulase activities and fungi, bacteria and Butyrivibrio fibrisolvens numbers increased for BI or CCA supply. In addition, protozoa increased for BI addition, and protease activity and Prevotella ruminicola increased for CCA supply. When CCA was supplemented, positive responses of R. albus and Ruminobacter amylophilus numbers to BI addition were enhanced. Blood glucose concentration was unchanged with BI supply, but increased for CCA supply. Blood nonesterified fatty acids and ß-hydroxybutyrate contents reduced with BI or CCA supply. Supplementation with BI or CCA increased blood BI or CA content. The results showed that supplementing BI or/and CCA improved lactation performance and nutrient digestion, and CCA supply did not enhance the lactation performance response to BI supply.


Subject(s)
Animal Feed , Animal Nutritional Physiological Phenomena , Biotin , Diet , Digestion , Fermentation , Lactation , Rumen , Vitamin B 12 , Animals , Cattle/physiology , Female , Rumen/drug effects , Rumen/physiology , Lactation/drug effects , Lactation/physiology , Digestion/drug effects , Animal Feed/analysis , Diet/veterinary , Fermentation/drug effects , Biotin/administration & dosage , Biotin/pharmacology , Vitamin B 12/pharmacology , Vitamin B 12/administration & dosage , Dietary Supplements , Milk/chemistry
4.
Molecules ; 28(13)2023 Jun 23.
Article in English | MEDLINE | ID: mdl-37446601

ABSTRACT

Melatonin has profound antioxidant activity and numerous functions in humans as well as in livestock and poultry. Additionally, melatonin plays an important role in regulating the biological rhythms of animals. Combining melatonin with scientific breeding management has considerable potential for optimizing animal physiological functions, but this idea still faces significant challenges. In this review, we summarized the beneficial effects of melatonin supplementation on physiology and reproductive processes in cattle, including granulosa cells, oocytes, circadian rhythm, stress, inflammation, testicular function, spermatogenesis, and semen cryopreservation. There is much emerging evidence that melatonin can profoundly affect cattle. In the future, we hope that melatonin can not only be applied to cattle, but can also be used to safely and effectively improve the efficiency of animal husbandry.


Subject(s)
Animal Husbandry , Breeding , Cattle , Melatonin , Animals , Cattle/genetics , Cattle/growth & development , Cattle/physiology , Animal Husbandry/methods , Breeding/methods , Dietary Supplements , Granulosa Cells/drug effects , Granulosa Cells/physiology , Melatonin/pharmacology , Melatonin/physiology , Oocytes/drug effects , Oocytes/physiology , Reproduction/drug effects , Reproduction/physiology
5.
Sci Rep ; 11(1): 21152, 2021 10 27.
Article in English | MEDLINE | ID: mdl-34707145

ABSTRACT

In this study we present systematic framework to analyse the impact of farm profiles as combinations of environmental conditions and management practices on common diseases in dairy cattle. The data used for this secondary data analysis includes observational data from 166 farms with a total of 5828 dairy cows. Each farm is characterised by features from five categories: husbandry, feeding, environmental conditions, housing, and milking systems. We combine dimension reduction with clustering techniques to identify groups of similar farm attributes, which we refer to as farm profiles. A statistical analysis of the farm profiles and their related disease risks is carried out to study the associations between disease risk, farm membership to a specific cluster as well as variables that characterise a given cluster by means of a multivariate regression model. The disease risks of five different farm profiles arise as the result of complex interactions between environmental conditions and farm management practices. We confirm previously documented relationships between diseases, feeding and husbandry. Furthermore, novel associations between housing and milking systems and specific disorders like lameness and ketosis have been discovered. Our approach contributes to paving a way towards a more holistic and data-driven understanding of bovine health and its risk factors.


Subject(s)
Animal Husbandry/standards , Cattle Diseases/epidemiology , Cattle/physiology , Animals , Female , Male
6.
Pol J Vet Sci ; 24(2): 225-233, 2021 Jun.
Article in English | MEDLINE | ID: mdl-34250771

ABSTRACT

This study details the relationship between maternal plasma oxidant-antioxidant enzymes with colostrum quality, serum gamma glutamyl transferase (GGT), immunoglobulin G (IgG) and IgM concentrations of calves in the different calving seasons. Holstein breed cows between two and eight lactations and their calves were enrolled in the study. Holstein cows calving in winter (n=45) and their calves (n=45) were assigned to the winter group, while cows calving in summer (n=45) and their calves (n=45) were assigned to the summer group. Samples for malondialdehyde (MDA) and glutathione peroxidase (GSH-Px) were collected on day -21±3 before expected calving and also on calving day (Day 0). IgG and the specific gravity of the colostrum were determined after calving. Serum GGT and IgG and IgM were measured before the feeding, with colostrum, of calves (0 hours) and also in the 24th hour following the feeding of colostrum. Plasma MDA levels at -21±3 and 0 days in the summer cows were determined to be higher. GSH-Px activity was higher in the winter cows. IgG levels and the specific gravity of the colos- trum were also higher in the winter cows. Calf IgG levels at the 24th hour of life were higher in the winter cows. In the winter group, IgM levels at 0 and 24 hours were also higher. While MDA was negatively correlated with IgG, IgM, GGT, IgG and the specific gravity of colostrum, GSH-Px activity had a positive correlation with IgG, IgM, GGT, IgG and the specific gravity of colostrum. The observed differences in plasma MDA, GSH-Px, calf serum IgG and IgM levels, and colostrum quality between both groups suggest a possible seasonal effect. The relationship between maternal oxidant-antioxidant enzymes, colostrum quality, and passive calf immunity revealed that these enzymes could be used as indicators in the evaluation of calf health and colos- trum quality.


Subject(s)
Antioxidants/metabolism , Cattle/physiology , Colostrum/physiology , Immunity, Maternally-Acquired/physiology , Oxidative Stress/physiology , Seasons , Animals , Female , Immunoglobulin G/blood , Immunoglobulin M/blood , Parturition , Pregnancy , gamma-Glutamyltransferase/blood , gamma-Glutamyltransferase/metabolism
7.
Res Vet Sci ; 138: 148-160, 2021 Sep.
Article in English | MEDLINE | ID: mdl-34144282

ABSTRACT

The objective of this randomized, placebo-controlled, double-blinded field trial was to investigate the effects of oral administration of purple coneflower (Echinacea purpurea L. (EP)) on performance, health and immune parameters in calves. Calves (n = 27) were enrolled to three groups (9 calves per group): 0.5 g EP/calf per day (ECL), 5 g EP/calf per day (ECH) or placebo. Calves were vaccinated with Bluetongue-Virus (BTV) serotype 4 vaccine to investigate EPs effects on seroconversion. Clinical and performance parameters, inter alia body weight, health and milk intake were recorded for 57 days. Blood samples were analyzed for BTV antibodies and IgG by ELISA, white and red blood cell counts by flow cytometry and mRNA abundance of various inflammatory markers in leukocytes (IL-1ß, IL-8, tumor necrosis factor α (TNFα), cyclooxygenase 2 (Cox-2) and prostaglandin E synthase) was studied. The findings demonstrated no differences between groups regarding performance parameters. In all groups, calves suffered from diarrhea for a minimum of 2 days, but EP reduced the number of diarrhea days by 44% in ECL and increased the body temperature. Interestingly, ECL resulted in an increased number of respiratory disease days during the follow-up period. EP did not change blood cell and IgG counts, whereas eosinophil granulocytes were reduced in ECL. Decreased levels of hemoglobin and hematocrit were found in ECH. Prostaglandin E synthase levels in leukocytes were higher in ECL and ECH, whereas no differences were obtained for IL-1ß, IL-8, TNFα and Cox-2. Due to the unexpected occurrence of BTV seropositive calves before the first vaccination, 13 calves were excluded from the evaluation on seroconversion and no statistical analyses could be performed regarding antibody production. BTV-4 antibodies were not produced in 4 placebo-calves, whereas 4 of 5 and 1 of 6 ECL- and ECH-calves produced antibodies. Further investigations are needed to draw final conclusions on mode of action and efficacy of EP in calves.


Subject(s)
Bluetongue virus/immunology , Cattle/physiology , Echinacea/chemistry , Plant Extracts/administration & dosage , Vaccination/veterinary , Viral Vaccines/immunology , Animals , Cattle/growth & development , Cattle/immunology , Double-Blind Method , Female , Male , Plant Extracts/chemistry , Seroconversion
8.
J Dairy Res ; 88(2): 139-146, 2021 May.
Article in English | MEDLINE | ID: mdl-34105452

ABSTRACT

We investigated and compared the effects of low and high concentrate supplementation in terms of animal welfare, health and reproductive performance in two different dairy cow breeds on small-scale mountain farms. 64 South Tyrolean dairy farms were evaluated using an on-farm assessment for animal-based and resource-based welfare indicators, data from test day records, and a questionnaire for the farmer. Farms were divided into four groups: low input Tyrolean Grey (L-TG), low input Brown Swiss (L-BS), high input Tyrolean Grey (H-TG) and high input Brown Swiss (H-BS). Effects of intensity level, breed and their interaction were calculated and analyzed statistically. The predominant husbandry system across all groups was tie-stall. The average energy-corrected milk yield increased with increasing concentrate level, with L-TG showing the lowest and H-BS showing the highest milk yield. Age at first calving was lowest in H-BS when compared to all other systems, while numbers of lactations were higher in L-TG compared to H-BS. Feed efficiency (percentage of milk out of roughage) was significantly higher in L-TG and L-BS when compared to H-TG and H-BS. L-BS showed the poorest results for most of the welfare indicators such as lean cows, lesions and percentage of dirty animals. In conclusion, a higher concentrate level in diets does not lead automatically to lower animal welfare for dairy cows in alpine regions. Indeed, keeping high yielding breeds in extensive systems seems to be challenging. The dual-purpose breed TG showed some clear advantages in that calving interval was lower and the number of lactations greater.


Subject(s)
Animal Feed , Cattle/physiology , Dairying/methods , Farms , Lactation/physiology , Animal Husbandry/methods , Animal Welfare , Animals , Diet/veterinary , Dietary Supplements , Farmers , Female , Health Status , Pregnancy , Reproduction/physiology , Species Specificity
9.
Reprod Domest Anim ; 56(9): 1227-1234, 2021 Sep.
Article in English | MEDLINE | ID: mdl-34174127

ABSTRACT

The results of most studies show the beneficial effect of milking automation on production parameters of dairy cows, but its effect on fertility traits is debatable. Therefore, a study was undertaken to predict cow fertility - services per conception (SC) and calving interval (CI) - based on automatic milking system (AMS) data collected in the periparturient period subdivided into the second and first week before calving, 1-4, 5-7, 8-14, 15-21 and 22-28 days of lactation. SC and CI were predicted using daily indicators such as concentrate intake, number of milkings, cow box time, milking time, milking speed, colostrum and milk yield, composition, temperature and electrical conductivity. The study material was derived from the AMS management system and from the SYMLEK milk recording system. The analysis covered data for 16,329 milkings of 398 Polish Holstein-Friesian (PHF) cows, which were used in three AMS herds. The collected numerical data were statistically analysed by correlation analysis in parallel with decision tree technique (SAS statistical package). The present study showed that due to the low, mostly non-significant coefficients of correlation between AMS data collected between 2 weeks before and 4 weeks after calving, it is not possible to predict cow fertility based on single traits. It has been established that the decision tree method may help breeders, already during the postcalving period, to choose the level of factors associated with AMS milking, which will ensure good fertility of cows in a herd. The most favourable number of services per conception is to be expected from cows that were milked <1.6 times per day from 1 to 4 days of lactation and electrical conductivity of their colostrum did not exceed 69 mS during that time. In turn, shortest CI (366 days) will be characteristic of the cows whose average daily colostrum yield did not exceed 20.2 kg and their daily concentrate intake from 8 to 14 days of lactation was at least 5.0 kg.


Subject(s)
Cattle/physiology , Dairying/methods , Fertility , Animals , Colostrum , Dairying/instrumentation , Feeding Behavior , Female , Lactation , Milk/statistics & numerical data , Pregnancy
10.
Anim Reprod Sci ; 229: 106760, 2021 Jun.
Article in English | MEDLINE | ID: mdl-33962315

ABSTRACT

Effects of nutrition on insulin-like growth factor-I (IGF-I), IGF binding proteins (IGFBP), and insulin in plasma and dominant follicles were evaluated at day 72 and 56 (Exp. 1, n = 12 and Exp. 2, n = 28, respectively) postpartum in anovulatory primiparous beef cows. Cows were stratified based on body condition score at calving and randomly assigned to nutritional treatments: maintain (M), 2.27 kg of a 40 % CP supplement per day and ad libitum hay; or gain (G), ad libitum access to a 50 % concentrate diet and ad libitum hay. Blood samples were collected twice weekly starting 30 days postpartum. Ovarian follicles were evaluated using ultrasonography commencing 42 (Exp. 1) or 30 (Exp. 2) days postpartum. Body weight and condition score were greater (P < 0.05) for cows of G than M groups and postpartum interval to luteal function was longer for cows of the M than G group. Insulin and IGF-I concentrations in follicular fluid (FF) and plasma were greater (P < 0.05) for cows of the G than M group at follicular aspiration. Plasma and FF IGFBP4 and IGFBP5 concentrations were greater (P <  0.05) in Exp. 2, and IGFBP5 was greater in Exp. 1 for cows of the G than M group. Treatment did not affect FF steroid concentrations or granulosal cell CYP19A1, PAPPA, IGFBP4, and IGFBP5 mRNA abundance. These results indicate concentrations of IGF-I, insulin, IGFBP4, and IGFBP5 in FF and plasma are affected by nutritional intake and may be related to follicular function.


Subject(s)
Cattle/physiology , Diet/veterinary , Insulin-Like Growth Factor Binding Proteins/metabolism , Ovarian Follicle/drug effects , Postpartum Period , Somatomedins/metabolism , Androstenedione/chemistry , Androstenedione/metabolism , Animal Feed/analysis , Animal Nutritional Physiological Phenomena , Animals , Body Composition , Body Weight , Cattle/blood , Estradiol/chemistry , Estradiol/metabolism , Female , Gene Expression Regulation/drug effects , Insulin-Like Growth Factor Binding Proteins/blood , Insulin-Like Growth Factor Binding Proteins/genetics , Ovarian Follicle/metabolism , Progesterone/chemistry , Progesterone/metabolism , Somatomedins/genetics
11.
Anim Sci J ; 92(1): e13564, 2021.
Article in English | MEDLINE | ID: mdl-34047427

ABSTRACT

This experiment was designed to evaluate the effects of different concentrate crude protein (CP) concentration on performance, metabolism and efficiency of N utilization (ENU) on early-lactation dairy cows grazing intensively managed tropical grass. Thirty cows were used in a ten replicated 3 × 3 Latin square design. The treatments consisted of three levels of concentrate CP: 7.9%, 15.4%, and 20.5% offered at a rate of 1 kg (as-fed basis)/3 kg of milk. The cows fed low and medium CP had negative balance of rumen degradable protein and metabolizable protein. Increasing CP tended to linearly increase DMI, 3.5% FCM and milk casein, and linearly increased the yields of milk fat and protein. Increasing CP linearly increased the intake of N, the concentration of rumen NH3 -N, and the losses of N in milk, urine, and feces. Increasing dietary CP linearly increased the molar proportion of butyrate but had no effect on the other rumen VFAs and no effect on microbial yield. In conclusion, feeding a concentrate with 20.5% of CP to early-lactation dairy cows grazing tropical grasses, leading to a 17.8% CP diet, tended to increase DMI, increased the yield of 3.5% FCM and the milk N excretion, and decreased ENU by 32%.


Subject(s)
Animal Nutritional Physiological Phenomena/physiology , Cattle/metabolism , Cattle/physiology , Diet/veterinary , Dietary Proteins/administration & dosage , Dietary Supplements , Herbivory/physiology , Lactation/physiology , Milk/metabolism , Poaceae , Rumen/metabolism , Tropical Climate , Animals , Female , Nitrogen/metabolism
12.
PLoS One ; 16(4): e0243953, 2021.
Article in English | MEDLINE | ID: mdl-33930018

ABSTRACT

Increasing methionine availability in dairy cow diets during the first third of lactation may enhance their performance and health. The aim of this study was to determine the effect of supplementing rumen-protected methionine (Smartamine® M, SM) in a lactation diet with protein and energy levels calculated according to the literature. Seventy-six multiparous Holstein cows (39.1 ± 6.8 kg of milk/d and 65 ± 28 DIM) were assigned to 1 of 2 dietary treatments (38/treatment) according to a randomized complete block design with a 2-wk (covariate) and 10-wk experimental period. Treatments were a basal diet (CON; 3.77 Lys:1Met); and CON + 23 g SM (2.97 Lys:1 Met). Individual milk samples were taken every 2 weeks to determine milk composition. Blood was collected from 24 cows on d+30 d to measure plasma AA levels. Body weight and body condition score (BCS) were measured at the beginning and the end of the experiment. The SM diet promoted higher milk yield (41.7 vs. 40.1 kg/d; P = 0.03). Energy-corrected milk yield (41.0 vs. 38.0 kg/d), milk protein yield (1.30 vs. 1.18 kg/d), milk protein (3.14% vs. 2.97%) and casein (2.39% vs. 2.28%) were also different (P < 0.01) as well as milk fat yield (1.42 vs. 1.29 kg/d; P = 0.02). A trend (P = 0.06) for higher milk fat % (3.41% vs. 3.21%) was observed. Both diets resulted in similar body weight, but CON-fed cows tended (P = 0.08) to have higher BCS. Higher plasma methionine levels were determined with SM compared with CON (29.6 vs. 18.4 µM; P < 0.01), but lysine and histidine were not different. Dietary supplementation of RPM improved productive performance by increasing milk yield and milk components yields, suggesting better dietary AA utilization when Met levels are adjusted in Lys-adequate lactation diets.


Subject(s)
Animal Feed , Cattle/physiology , Dietary Supplements , Methionine/metabolism , Milk/metabolism , Animal Feed/analysis , Animal Husbandry , Animals , Dietary Supplements/analysis , Female , Lactation , Methionine/administration & dosage , Methionine/analysis , Milk/chemistry , Milk Proteins/analysis , Milk Proteins/metabolism , Rumen/physiology
13.
Anim Sci J ; 92(1): e13558, 2021.
Article in English | MEDLINE | ID: mdl-33904228

ABSTRACT

This study aimed to evaluate the feeding choice, dry matter (DM) intake, and milk production of dairy cows that strip grazed on a mixed perennial species pasture receiving different supplementation strategies. The treatments were without supplementation (WS) or with supplementation of either corn silage (CS) or a total mixed ration (TMR) based on CS and concentrates, in a subtropical area. The supplements were provided ad libitum after the afternoon milking. Twelve Holstein × Jersey cows in mid-lactation (133 ± 43 days in milk) were divided into six groups (two cows/group) and distributed in accordance with a replicated 3 × 3 Latin square design, with three 21 day periods (15 adaptation days and 6 evaluation days). The total DM intake, milk production, milk fat, and milk protein production were greater in the TMR treatment than in the WS and CS treatments and were similar between the WS and CS treatments. The herbage DM intake and proportion of time spent grazing were greater in the CS treatment than in the TMR treatment. CS supplementation did not affect the total DM intake or milk production/cow, whereas TMR supplementation greatly improved the total DM intake and milk production of the dairy cows grazing on mixed perennial species.


Subject(s)
Animal Nutritional Physiological Phenomena , Cattle/metabolism , Cattle/physiology , Diet/veterinary , Dietary Supplements , Eating/physiology , Herbivory , Lactation/physiology , Silage , Zea mays , Animals , Female , Glycolipids/metabolism , Glycoproteins/metabolism , Lipid Droplets/metabolism , Milk/metabolism , Milk Proteins/metabolism , Tropical Climate
14.
Arch Anim Nutr ; 75(2): 79-104, 2021 Apr.
Article in English | MEDLINE | ID: mdl-33641544

ABSTRACT

The climate-relevant enteric methane (CH4) formation represents a loss of feed energy that is potentially meaningful for energetically undersupplied peripartal dairy cows. Higher concentrate feed proportions (CFP) are known to reduce CH4 emissions in cows. The same applies to the feed additive 3-nitrooxypropanol (3-NOP), albeit through different mechanisms. It was hypothesised that the hydrogen not utilised for CH4 formation through the inhibition by 3-NOP would be sequestered by propionate formation triggered by higher CFP so that it could thereby give rise to a synergistically reduced CH4 emission. In a 2 × 2-factorial design, low (LC) or high (HC) CFP were either tested without supplements (CONLC, CONHC) or combined with 3-NOP (NOPLC, 48.4 mg/kg dry matter (DM); NOPHC, 51.2 mg 3-NOP/kg DM). These four rations were fed to a total of 55 Holstein cows from d 28 ante partum until d 120 post partum. DM intake (DMI) was not affected by 3-NOP but increased with CFP (CFP; p < 0.001). CH4/DMI and CH4/energy-corrected milk (ECM) were mitigated by 3-NOP (23% NOPLC, 33% NOPHC) (p < 0.001) and high CFP (12% CON, 22% 3-NOP groups) (CFP × TIME p < 0.001). Under the conditions of the present experiment, the CH4 emissions of NOPLC increased to the level of the CON groups from week 8 until the end of trial (3-NOP × CFP × TIME; p < 0.01). CO2 yield decreased by 3-NOP and high CFP (3-NOP × CFP; p < 0.001). The reduced body weight loss and feed efficiency in HC groups paralleled a more positive energy balance being most obvious in NOPHC (3-NOP × CFP; p < 0.001). ECM was lower for NOPHC compared to CONHC (3-NOP × CFP; p < 0.05), whereas LC groups did not differ. A decreased fat to protein ratio was observed in HC groups and, until week 6 post partum, in NOPLC. Milk lactose and urea increased by 3-NOP (3-NOP; p < 0.05). 3-NOP and high CFP changed rumen fermentation to a more propionic-metabolic profile (3-NOP; CFP; p < 0.01) but did not affect rumen pH. In conclusion, CH4 emission was synergistically reduced when high CFP was combined with 3-NOP while the CH4 mitigating 3-NOP effect decreased with progressing time when the supplement was added to the high-forage ration. The nature of these interactions needs to be clarified.


Subject(s)
Cattle/physiology , Fermentation , Lactation/drug effects , Methane/metabolism , Propanols/metabolism , Rumen/metabolism , Animal Feed/analysis , Animals , Diet/veterinary , Dietary Supplements/analysis , Dose-Response Relationship, Drug , Female , Propanols/administration & dosage , Random Allocation
15.
J Dairy Res ; 88(1): 29-32, 2021 Feb.
Article in English | MEDLINE | ID: mdl-33594969

ABSTRACT

This research communication addressed the hypothesis that late lactation cows offered an oat-grain-based supplement or a high level of α-TOC supplementation at pasture would have improved milk composition and processability. Over a grazing period of 49 d, 48 Holstein Friesian dairy cows were randomly assigned to one of four dietary treatments. The dietary treatments were: control, pasture only (CTRL), pasture + 2.65 kg DM barley-based concentrate + 350 IU α-TOC/kg (BARLO), pasture + 2.65 kg DM oat-based concentrate + 350 IU α-TOC/kg (OATLO) and pasture + 2.65 kg DM oat-based concentrate + 1050 IU α-TOC/kg (OATHI). Within this randomised complete block design experiment cows were blocked on days in milk (DIM) and balanced for parity, milk yield and composition. Rennet coagulation time (RCT) was reduced in milk from cows offered OATHI compared to CTRL cows and OATLO. Concentration of conjugated linoleic acid (CLA) was increased by OATHI compared to OATLO and in OATLO compared to CTRL. Supplementation with OATHI reduced individual saturated fatty acids (SFAs) in milk compared to OATLO. In conclusion, supplementing grazing dairy cows with an oat-based supplement improved total milk CLA concentration compared to pasture only. Offering a high level of α-TOC (2931 IU/d) to dairy cows reduced RCT, individual SFA and increased total CLA concentration of milk compared to a lower α-TOC level (738 IU α-TOC/d).


Subject(s)
Cattle/physiology , Edible Grain , Lactation/physiology , Milk/chemistry , alpha-Tocopherol/administration & dosage , Animal Feed/analysis , Animals , Avena , Dairying/methods , Diet/veterinary , Dietary Supplements , Fatty Acids/analysis , Female , Hordeum , Linoleic Acids, Conjugated , Lolium
16.
PLoS One ; 16(2): e0246922, 2021.
Article in English | MEDLINE | ID: mdl-33577610

ABSTRACT

Slow-release urea (SRU) is a coated non-protein nitrogen (NPN) source for providing rumen degradable protein in ruminant nutrition. A meta-analysis was conducted to evaluate the effects of replacing vegetable protein sources with SRU (Optigen®, Alltech Inc., USA) on the production performance of dairy cows. Additionally, the impact of SRU supplementation on dairy sustainability was examined by quantifying the carbon footprint (CFP) of feed use for milk production and manure nitrogen (N) excretion of dairy cows. Data on diet composition and performance variables were extracted from 17 experiments with 44 dietary comparisons (control vs. SRU). A linear mixed model and linear regression were applied to statistically analyse the effect of SRU on feed intake and production performance. Feeding SRU decreased (P < 0.05) dry matter intake (DMI, -500 g/d) and N intake (NI, -20 g/d). There was no significant effect (P > 0.05) on milk yield, fat-corrected milk, energy-corrected milk, and milk fat and protein composition. However, SRU supplementation improved (P < 0.05) feed efficiency (+3%) and N use efficiency (NUE, +4%). Regression analyses revealed that increasing SRU inclusion level decreased DMI and NI whereas increasing dietary crude protein (CP) increased both parameters. However, milk yield and feed efficiency increased in response to increasing levels of SRU inclusion and dietary CP. The NUE had a positive relationship with SRU level whereas NUE decreased with increasing dietary CP. The inclusion of SRU in dairy diets reduced the CFP of feed use for milk production (-14.5%; 373.13 vs. 319.15 g CO2 equivalent/kg milk). Moreover, feeding SRU decreased manure N excretion by 2.7% to 3.1% (-12 to -13 g/cow/d) and N excretion intensity by 3.6% to 4.0% (-0.50 to -0.53 g N/kg milk). In conclusion, feeding SRU can contribute to sustainable dairy production through improvement in production efficiency and reduction in environmental impacts.


Subject(s)
Animal Feed , Cattle/physiology , Diet/veterinary , Milk/metabolism , Urea/metabolism , Animal Feed/analysis , Animal Husbandry , Animal Nutritional Physiological Phenomena , Animals , Dairying , Dietary Proteins/metabolism , Dietary Supplements/analysis , Female , Lactation
17.
J Anim Sci ; 99(1)2021 01 01.
Article in English | MEDLINE | ID: mdl-33523183

ABSTRACT

The objective of this study was to investigate the effects of processing index (PI) of barley grain and dietary undigested neutral detergent fiber (uNDF) concentration on dry matter (DM) intake, chewing activity, ruminal pH and fermentation characteristics, total tract digestibility, gastrointestinal barrier function, and blood metabolites of finishing beef heifers. The PI was measured as the density after processing expressed as a percentage of the density before processing, and a smaller PI equates to a more extensively processed. Six ruminally cannulated heifers (average body weight, 715 ± 29 kg) were used in a 6 × 6 Latin square design with three PI (65%, 75%, and 85%) × 2 uNDF concentration (low and high; 4.6% vs. 5.6% of DM) factorial arrangement. The heifers were fed ad libitum a total mixed ration consisting of 10% barley silage (low uNDF), or 5% silage and 5% straw (high uNDF), 87% dry-rolled barley grain, and 3% mineral and vitamin supplements. Interactions (P < 0.01) of PI × uNDF were observed for DM intake, ruminating and total chewing time, and DM digestibility in the total digestive tract. Intake of DM, organic matter (OM), starch, and crude protein (CP) did not differ (P > 0.14) between low and high uNDF diets, but intakes of NDF and acid detergent fiber were greater (P = 0.01) for high uNDF diets regardless of barley PI. Heifers fed high uNDF diets had longer (P = 0.05) eating times (min/d or min/kg DM) and tended (P = 0.10) to have longer total chewing times (min/kg DM) than those fed low uNDF diets. Additionally, heifers sorted (P = 0.01) against long particles (>19 mm) for high uNDF diets but not for low uNDF diets. Altering PI of barley grain did not affect (P > 0.12) total volatile fatty acid (VFA) concentration, molar percentages of individual VFA, or duration of ruminal pH < 5.8 and <5.6. Total VFA concentration was less (P = 0.01), acetate percentage was greater (P = 0.01), and duration of ruminal pH < 5.8 and <5.6 was less (P = 0.05) for high compared with low uNDF diets. Digestibility of DM, OM, and CP was greater (P = 0.02) for low vs. high uNDF diets with PI of 65% and 75%, with no difference between low and high uNDF diets at PI of 85%. Blood metabolites and gastrointestinal tract barrier function were not affected (P ≥ 0.10) by the treatments. These results suggest that increasing dietary uNDF concentration is an effective strategy to improve ruminal pH status in finishing cattle, regardless of the extent of grain processing, whereas manipulating the extent of barley processing did not reduce the risk of ruminal acidosis.


Subject(s)
Cattle/metabolism , Dietary Fiber/metabolism , Digestion/physiology , Hordeum , Rumen , Animal Feed/analysis , Animal Nutritional Physiological Phenomena , Animals , Cattle/physiology , Diet/veterinary , Dietary Fiber/administration & dosage , Female , Fermentation , Hydrogen-Ion Concentration , Mastication , Nutrients , Rumen/chemistry , Rumen/metabolism
18.
Vet Med Sci ; 7(3): 876-887, 2021 05.
Article in English | MEDLINE | ID: mdl-33502117

ABSTRACT

The present study investigated the effects of overripe pulp and green peel extract and powder of banana fruit (Musa. cavendish) on haematological, biochemical, immunological, health, and performance of Holstein dairy calves. In all, 40 newborn calves were randomly divided into four groups of 10 animals. In the control group, animals received no banana meal. In group 1, calves were supplemented with 2 g (dry matter)/kg body weight/day of overripe banana pulp extract. The calves in group 2 were supplemented with 1 g (dry matter) of overripe banana pulp extract/kg body weight/day and 1 g (dry matter) of green banana peel extract/kg body weight/day. The animals in group 3 were supplemented with 2 g/kg body weight/day of green banana peel powder. The feeding period of calves on the tested supplements was 5 days. Blood samples and other evaluations were taken on day 0 (at birth, before supplementation) and on days 7, 15 and 30. Just a trend towards better average daily weight gain was seen in groups 2 and 3 than others (p = 0.073). Significant group and sampling time interactions were seen for the quantities of RBC (group 1 was lower than other groups at day 30), MCV (group 3 was lower than other groups at day 30) and MCH (group 1 was higher than other groups at day 30) (p < 0.05). A trend towards significance in values of IgG (group 1 was lower than other groups at days 15 and 30) and bilirubin (higher values at day 7 in groups 1 and 2 than control, higher amounts at days 15 and 30 in groups 3 and 2 than control, respectively) was also observed. In conclusion, banana supplementation in neonatal calves had beneficial effects on the values of RBC, MCV, MCH, bilirubin, IgG and average daily weight gain in dairy calves.


Subject(s)
Cattle/physiology , Immunity/drug effects , Musa/chemistry , Plant Extracts/metabolism , Animal Feed/analysis , Animals , Blood Chemical Analysis/veterinary , Cattle/blood , Cattle/growth & development , Cattle/immunology , Diet/veterinary , Dietary Supplements/analysis , Dose-Response Relationship, Drug , Fruit/chemistry , Hematologic Tests/veterinary , Plant Extracts/administration & dosage , Powders , Random Allocation
19.
Anim Biotechnol ; 32(1): 51-66, 2021 Feb.
Article in English | MEDLINE | ID: mdl-31443628

ABSTRACT

Providing essential amounts of balanced nutrients is one of the most vital aspects of livestock production. Among nutrients, protein has an essential role in many physiological functions of animals. Amino acids in needs for both high and medium yielding ruminant animals are not fully covered by microbial degraded feed sources in the rumen of animals, and they must be met by protecting the proteins from being broken down in the rumen; hence, the dietary supplementation of rumen-protected proteins (RPP), including mainly rumen-protected methionine (RPM), became imperative. Many researchers are interested in studying the role of (RPM) in ruminant animals concerning its effect on milk yield, growth performance, digestibility, dry matter intake and nitrogen utilization efficiency. Unfortunately, results obtained from several investigations regarding RPM indicated great fluctuation between its useful and useless effects in ruminant nutrition particularly during early and late lactation period; therefore, this review article may be helpful for ruminant farm owners when they decide to supplement RPM in animal's diet. Conclusively, supplementation of RPM often has a balanced positive influence, without any reported negative impact on milk yield, growth performance and blood parameters especially in early lactating ruminant animals and when used with the low crude protein diet.


Subject(s)
Cattle/physiology , Methionine , Reproduction/drug effects , Rumen/physiology , Sheep/physiology , Animal Feed , Animals , Dietary Supplements , Female , Methionine/administration & dosage , Methionine/chemistry , Methionine/pharmacology , Nitrogen/metabolism
20.
Anat Histol Embryol ; 50(1): 93-101, 2021 Jan.
Article in English | MEDLINE | ID: mdl-32815592

ABSTRACT

The aim of this study was to evaluate the effect of daily biotin supplementation on the mineral composition and microstructure of the abaxial hoof wall in dairy heifers. The heifers were housed on a concrete floor and fed for weight gain more than 800 g per day, which is a challenging environment for the hoof. Twelve crossbred dairy heifers (Jersey × Holstein) were divided into two treatment groups. Animals in the control group (n = 6) received a diet without supplemental biotin, while the heifers in the biotin-supplemented feed group (n = 6) each received 20 mg of biotin daily for 120 days. Samples of the abaxial hoof wall were collected from the outer claw of the fore and hind limb, before and after supplementation. The samples were evaluated by X-ray fluorescence spectrometry, computed microtomography, atomic force microscopy and confocal laser scanning microscopy. Biotin supplementation increased the sulphur content and decreased the calcium and potassium content in the abaxial hoof wall. Biotin treatment also increased the percentage of horn tubules with smaller diameter marrow (17-51 µm). However, biotin did not influence the surface relief of the hoof wall, suggesting that its action is limited to the inner layers of the stratum corneum. Daily supplementation with 20 mg of biotin promoted changes in the mineral composition and microstructure of abaxial hoof wall of crossbred dairy heifers. These findings suggest biotin supplementation improves hoof quality and may help to understand the function of biotin in the stratum corneum.


Subject(s)
Biotin/pharmacology , Cattle/physiology , Dietary Supplements , Hoof and Claw/chemistry , Minerals/chemistry , Vitamin B Complex/pharmacology , Animal Feed/analysis , Animal Nutritional Physiological Phenomena , Animals , Biotin/administration & dosage , Diet/veterinary , Female , Minerals/metabolism , Vitamin B Complex/administration & dosage , X-Ray Microtomography
SELECTION OF CITATIONS
SEARCH DETAIL